Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Wombat and Giraffe kimberlite pipes in the Lac de Gras kimberlite field (64°N, 110°W) of the Northwest Territories, Canada, preserve unique post-eruptive lacustrine and paludal sedimentary records that offer rare insight into high-latitude continental paleoclimate. However, depositional timing—a key datum for atmospheric CO2 and paleoclimatic proxy reconstructions—of these maar infills remains ambiguous and requires refinement because of the large range in the age of kimberlites within the Lac de Gras kimberlite field. Existing constraints for the Giraffe pipe post-eruptive lacustrine and paludal maar sedimentary facies include a maximum Rb-Sr age of ca. 48 Ma (Ypresian, Eocene) based on kimberlitic phlogopite and a glass fission-track age of ca. 38 Ma (Bartonian, Eocene). The age of the Wombat pipe lacustrine maar sediments remains unclear, with unpublished pollen-based biostratigraphy suggesting deposition in the Paleocene (66–56 Ma). In this study, we examine distal rhyolitic tephra beds recovered from exploration drill cores intersecting the Wombat and Giraffe maar facies. We integrate zircon U-Pb laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) and chemical abrasion–isotope dilution–thermal ionization mass spectrometry (CA-ID-TIMS) geochronology, glass fission-track dating, palynology, and tephra glass geochemistry to refine chronological frameworks for these sedimentary deposits. The Giraffe maar CA-ID-TIMS tephra zircon U-Pb dating yielded a Bayesian model age of 47.995 ± 0.082|0.087 Ma (Ypresian) for the upper portion of the lacustrine sediments, while a single zircon grain from tephra in the lowermost lacustrine sediments had an age of 48.72 ± 0.29|0.30 Ma. The revised geochronology for the Giraffe maar provides a working age model for the ~50 m record of lacustrine silt and indicates an age ~10 m.y. older than previously thought. The Wombat maar LA-ICP-MS zircon U-Pb dating yielded an age of 80.9 ± 1.0 Ma (Campanian), which indicates deposition during the Late Cretaceous. This first radiometric age for the Wombat maar deposits is substantially older than earlier biostratigraphic inferences of a Paleocene age. This new age suggests that the Wombat maar sediments preserve evidence of some of the oldest known freshwater diatoms and synurophytes and provide key constraints for the paleogeography of the Western Interior Seaway during the Late Cretaceous.more » « less
-
Iron (Fe) is ubiquitous in nature and found as Fe II or Fe III in minerals or as dissolved ions Fe 2+ or Fe 3+ in aqueous systems. The interactions of soluble Fe have important implications for fresh water and marine biogeochemical cycles, which have impacts on global terrestrial and atmospheric environments. Upon dissolution of Fe III into natural aquatic systems, organic carboxylic acids efficiently chelate Fe III to form [Fe III –carboxylate] 2+ complexes that undergo a wide range of photochemistry-induced radical reactions. The chemical composition and photochemical transformations of these mixtures are largely unknown, making it challenging to estimate their environmental impact. To investigate the photochemical process of Fe III –carboxylates at the molecular level, we conduct a comprehensive experimental study employing UV-visible spectroscopy, liquid chromatography coupled to photodiode array and high-resolution mass spectrometry detection, and oil immersion flow microscopy. In this study, aqueous solutions of Fe III –citrate were photolyzed under 365 nm light in an experimental setup with an apparent quantum yield of ( φ ) ∼0.02, followed by chemical analyses of reacted mixtures withdrawn at increment time intervals of the experiment. The apparent photochemical reaction kinetics of Fe 3+ –citrates (aq) were expressed as two generalized consecutive reactions of with the experimental rate constants of j 1 ∼ 0.12 min −1 and j 2 ∼ 0.05 min −1 , respectively. Molecular characterization results indicate that R and I consist of both water-soluble organic and Fe–organic species, while P compounds are a mixture of water-soluble and colloidal materials. The latter were identified as Fe–carbonaceous colloids formed at long photolysis times. The carbonaceous content of these colloids was identified as unsaturated organic species with low oxygen content and carbon with a reduced oxidation state, indicative of their plausible radical recombination mechanism under oxygen-deprived conditions typical for the extensively photolyzed mixtures. Based on the molecular characterization results, we discuss the comprehensive reaction mechanism of Fe III –citrate photochemistry and report on the formation of previously unexplored colloidal reaction products, which may contribute to atmospheric and terrestrial light-absorbing materials in aquatic environments.more » « less
-
Abstract Ancient greenhouse periods are useful analogs for predicting effects of anthropogenic climate change on regional and global temperature and precipitation patterns. A paucity of terrestrial data from polar regions during warm episodes challenges our understanding of polar climate responses to natural/anthropogenic change and therefore our ability to predict future changes in precipitation. Ellesmere and Axel Heiberg Islands in the Canadian Arctic preserve terrestrial deposits spanning the late Paleocene to middle Eocene (59–45 Ma). Here we expand on existing regional sedimentology and paleontology through the addition of stable (δ13C, δ18O) and clumped (Δ47) isotope analyses on palustrine carbonates. δ13C isotope values range from −4.6 to +12.3‰ (VPDB), and δ18O isotope values range from −23.1 to −15.2‰ (VPDB). Both carbon and oxygen isotope averages decrease with increasing diagenetic alteration. Unusually enriched carbon isotope (δ13C) values suggest that analyzed carbonates experienced repeated dissolution‐precipitation enrichment cycles, potentially caused by seasonal fluctuations in water availability resulting in summer carbonate dissolution followed by winter carbonate re‐precipitation. Stable isotopes suggest some degree of precipitation seasonality or reduction in winter water availability in the Canadian Arctic during the Paleogene. Clumped (Δ47) temperature estimates range from 52 to 121°C and indicate low temperature solid‐state reordering of micritic samples and diagenetic recrystallization in sparry samples. Average temperatures agree with vitrinite reflectance data for Eureka Sound Group and underlying sediments, highlighting structural complexity across the region. Broadly, combined stable and clumped isotope data from carbonates in complex systems are effective for describing both paleoclimatic and post‐burial conditions.more » « less
An official website of the United States government
